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Abstract

Satisfiability (Sat) solvers are versatile tools that can help solve a wide array of problems.
For satisfiable instances, solvers output candidate solutions that can be efficiently checked.
For unsatisfiable instances, many solvers emit proofs of unsatisfiability that can also be
efficiently and formally checked. Thus, we can formally check Sat solver results for any given
problem instance.

However, many applications have problem instances that are encoded into Sat, rather
than expressed in Sat natively. For any problem instance, there are often many choices of
encoding. These encodings range in size and complexity, and the choice of encoding has a
direct impact on solver performance. But crucially, if the encoding is not correct, then solver
results are not trustworthy. Formal correctness proofs of the encodings ensure that trust.

In this work, we introduce a library for formally verifying Sat encodings. We present
formal verifications of encodings for the n-variable xor function and the at-most-one function.
We also verify an encoding of the at-most-k function. We completed our proofs using the
interactive theorem prover Lean. The methods we developed of formally verifying these
encodings extend beyond their applications, and so this library serves as a basis for future
encoding verification efforts.
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The greatest mistake is to imagine that we never err.

Thomas Carlyle 1
Introduction

One day, you find a golden lamp in your dusty attic, but you don’t recall ever owning such a
lamp. Scenes from Disney’s Aladdin flash in your mind as you pick it up and give it a rub.
At your touch, the lamp shakes in your hand and spews forth multicolored fog and smoke.
A booming voice announces that you awoke the oracle of the lamp and that it will answer
any question you ask it. But beware! You must be sure you have asked the right question,
for the oracle will answer only once. You consider your options. You have many questions
you would like to ask the oracle, but how can you ask the right question? In asking for the
meaning of life, how can you ensure the oracle won’t give a rote dictionary definition and
disappear in a puff of smoke? The problem is difficult, but you feel that if you express your
thoughts precisely, you can get the answers you desire.

While the attic scene is fantastical, computer scientists face similar situations in a wide
range of research problems. Often, researchers and engineers phrase difficult problems in
terms of another and use a black-box algorithm—an oracle—to find an answer. Part of
the challenge of using an oracle lies in translating, or encoding, the problem efficiently and
correctly. If the encoded version becomes too large, then a computationally-bound oracle
may take too long to answer. Or worse, if the encoded version doesn’t accurately represent
the original problem, then the oracle’s answers are of no help.

Satisfiability (Sat) solvers are powerful and versatile tools that are commonly used as
a black-box. They solve instances of the Sat problem, which asks whether there exists
a way to assign true and false values to Boolean variables to satisfy a formula. Sat is
NP-complete [12], and thus many computationally challenging problems can be reduced to
a Sat instance and given to a solver. As just a sampling of their prevalence in computer
science research, solvers are crucial in termination analysis of term-rewriting systems [25, 59],
for verifying hardware and software [13, 37], as internal tools for SMT solvers [6, 20], for the
bounded-model checking of C programs [11], and in resolving longstanding open problems in
mathematics [10, 36]. As Donald Knuth put it, Sat solving is a “killer app.”

One benefit of using a Sat solver as an oracle is the ability to verify results. If a solver
reports a satisfying assignment, then the candidate solution can be efficiently checked against
the input formula. Conversely, many solvers emit a certificate of unsatisfiability when they
report that there is no satisfying assignment. These certificates are written in a formal proof
system, such as resolution, that give a step-by-step proof of unsatisfiability [3, 34, 57]. A proof
checker can then machine-verify that the certificate is correct [28, 33]. Proof checkers are
often simple pieces of software, and many checkers have been formally verified [16, 17, 32, 54].
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The end result of the ability to verify solver results is that the Sat toolchain is trustworthy.
Even if the solver has bugs, any result produced by the solver can be machine-checked in an
efficient way. The offline checking of solver results allows the solver to focus on algorithmic
and data structure optimization. However, solvers incur significant overhead when producing
unsatisfiability certificates [56]. The alternative is to formally verify the solver itself, so any
emitted result is automatically trustworthy. A few solvers have been verified [41, 47].

Yet even if the Sat toolchain is trustworthy, solvers that are given unverified encodings
still produce untrustworthy results. Just as how asking the oracle in the attic a poorly
phrased question can give back a nonsense answer, so too can an error in translation give
back incorrect Sat results. One way to increase confidence in solver results is to provide a
proof of correctness of the encoding used. Pen-and-paper proofs suffice in a pinch, but formal
proofs written in a proof assistant are machine-verifiable and thus more trustworthy.

Researchers have already begun to use proof assistants to verify Sat encodings. Cruz-
Filipe, Marques-Silva, and Schneider-Kamp used Coq [7] to verify the base encoding, the
symmetry breaking used to simplify the encoding, and the proof checker used in resolving the
Pythagorean triples problem [18]. Hoque et al. used Isabelle/HOL [46] to verify the encoding
of a multiway decision graph into Sat [2]; the graph is used for bounded model checking
applications. Ishii and Fujii used Coq to verify a Sat-based IC3 algorithm, and Abdulaziz
and Kurz verified Sat-based planning for AI in HOL [1]. Giljeg̊ard and Wennerbreck used
HOL4 [50] to verify a set of CNF encoding functions [27].

In this thesis, we add to the line of work in verifying Sat encodings by introducing our
own proof library, written using the proof assistant Lean [21]. Our library formally verifies
encodings of the Boolean xor function, the at-most-one function, and the at-most-k function.
In addition to these results, our library contains supporting lemmas and data structures that
will assist in future verification efforts.

The thesis is organized as follows. Chapter 2 defines what it means for a formula to
encode a function. Chapter 3 discusses the Lean theorem prover and introduces Lean’s syntax.
Chapter 4 introduces our proof library. We introduce and prove correct the xor function in
Chapter 5. We do the same for the at-most-one and at-most-k functions in Chapter 6. We
conclude in Chapter 7.
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The difference between the right word and the almost right word
is really a large matter — it’s the difference between lightning and
a lightning bug.

Mark Twain 2
Sat encodings

So you’ve decided to use a Sat solver to solve your problem. Great choice! Your problem
needs to be encoded into Sat first. But what does it mean to encode your problem?

In this chapter, we define the notational machinery we use to talk about Boolean formulas,
satisfiability, and Sat encoding, and we discuss how to encode a problem into Sat.

2.1 Preliminaries

Sat solvers operate on formulas in propositional logic known as Sat instances. These
formulas are comprised of Boolean literals joined by logical connectives. A Boolean variable is
a variable that ranges over the classical truth values true (⊤) and false (⊥). Boolean literals
are positive or negative forms of Boolean variables, written as x and x, respectively. If x = ⊤,
then x = ⊥, and vice versa. Common logical connectives are and (∧), or (∨), implication
(→), and logical equivalence (↔), with the usual truth tables for each. Solvers attempt to
answer the question of whether there exists a truth assignment to the Boolean variables
that satisfies the formula. Such a truth assignment is called a satisfying assignment. When
F admits a satisfying assignment, we call F satisfiable. Many solvers output a satisfying
assignment when they determine that a formula F is satisfiable.

As an example, consider the following formula:

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3). ⌊2.1

F is satisfiable, as τ = {x1 = ⊤, x2 = ⊥, x3 = ⊤} is a satisfying assignment. We write
τ(F ) = ⊤ when τ satisfies F , and τ(F ) = ⊥ if not.

Many Sat solvers only accept formulas in conjunctive normal form (CNF) as valid input.
A formula is in CNF if it is a conjunction of clauses, each of which is a disjunction of Boolean
literals. Formula 2.1 is an example of a CNF formula.

While the requirement that input formulas be in CNF may seem restrictive, there is a
well-known result that any formula written with binary connectives can be transformed to a
logically equivalent one in CNF. However, the transformation may result in an exponential
blowup in the number of clauses, which impedes solver performance. As a result, researchers
have found ways of introducing fresh auxiliary variables to transform formulas into CNF
while keeping formula size linear in the input size.

Let vars(·) give the set of variables in a formula. For Formula 2.1, vars(F ) = {x1, x2, x3}.
We overload vars(·) for truth assignments τ to mean the set of variables that τ is defined over.

3



2.2. AN EXAMPLE ENCODING

If vars(τ) ⊊ vars(F ), then we call τ a partial assignment for F . When vars(τ) ⊇ vars(F ),
then τ is a full assignment for F . If σ is a truth assignment such that vars(τ) ⊆ vars(σ) and
τ(x) = σ(x) whenever x ∈ vars(τ), then we say that σ extends τ .

2.2 An example encoding

A great many problems are not written in terms of Sat instances. Yet because Sat is an
NP-complete problem [12], it is common to reduce these (possibly NP-complete) problems to
Sat. These reductions are accomplished via an encoding, which is an explicit algorithmic
transformation of the objects and constraints in the problem into a Boolean formula. A
correct encoding allows for the construction of a solution to the original problem when given
a satisfying assignment to the Sat instance.

To demonstrate how an NP-complete problem can be reduced to Sat, we encode the
problem of finding a Hamiltonian cycle in a graph into Sat.

Let G = (V,E) be a simple undirected graph, where V is the set of vertices and E ⊆ V ×V
is the set of edges. Let n := |V |. A Hamiltonian cycle is a single cycle through G that visits
every vertex exactly once. Formally, a Hamiltonian cycle is a sequence of vertices

S = v1v2 . . . vn−1vn

where S is a permutation of V and for all 1 ≤ i ≤ n, if vi, vi+1 are two adjacent vertices
in S, then (vi, vi+1) ∈ E (where the i are mod n). The Hamiltonian cycle (hc) problem
asks whether there exists a sequence S that satisfies these properties and, in the search
version, requires one to produce such an S, if one exists. The hc problem is well-known to
be NP-complete.

We start our encoding with the variables of our formula. We define a time-indexed set of
Boolean variables for each vertex:

{xv,1, xv,2, . . . , xv,n} ∀v ∈ V.

We interpret xv,t = ⊤ to mean that vertex v is the tth visited vertex in our cycle. We now
translate the constraints of the Hamiltonian cycle into Sat on these variables.

First, we require that for any vertex v visited in our cycle, there is some neighbor u that
we visited in the preceding time step (or at the nth time step, for the first vertex). Thus, for
all v ∈ V and for all 1 ≤ t ≤ n,

xv,t → (xu1,t−1 ∨ xu2,t−1 ∨ · · · ∨ xuk,t−1) ≡

(
xv,t ∨

k∨
i=1

xui,t−1

)
, ⌊2.2

where the ui are the k neighbors of v arranged in some order and where t− 1 is positive mod
n.

We also need to enforce that each vertex is visited exactly once in any Hamiltonian cycle
with some kind of encoding. Let’s call this encoding ExactlyOne. So for all v ∈ V , we
require that

ExactlyOne(xv,1, . . . , xv,n) ⌊2.3

4



2.3. ENCODING AS A MATHEMATICAL OBJECT

be satisfied. As we will see in Chapter 6, there are several ways in which ExactlyOne
encodings can be defined.

Put those two sets of constraints together, and we have a formula encoding the hc problem.
If each of constraints 2.2 and 2.3 are written in CNF, then we have a CNF formula ready to
give to a Sat solver.

Assuming a Hamiltonian cycle S exists, the solver should report a satisfying assignment
on the xv,t. We can construct a cycle by setting vi to be the v ∈ V with xv,i = ⊤, for each
1 ≤ i ≤ n. Thus, we have a way to construct a solution from a satisfying assignment to the
encoded instance.

The above encoding of the hc problem was a straightforward one, but not the only
possible one. In fact, if ExactlyOne produces O(n2) clauses for an n-variable input, then
our encoding requires O(n3) clauses. For graphs above small n (say, n = 100), such a large
encoding will cause solvers to time out or require too much memory. Thus, it is crucial that
more compact encodings are used. Others exist based on different sets of variables, such as
binary adders or linear-feedback shift registers [60]. Strong experimental results show that
only by combining the best aspects of a variety of hc encodings can large graph benchmarks
become tractable for state-of-the-art solvers [31]. The encoding is complicated, which makes
a proof of correctness all the more valuable.

But from a mathematical point of view, the choice of encoding does not matter. All we
require is that the encoding be correct—that it accurately represents the constraints of the
problem, and that given a satisfying assignment to the encoded formula, we can construct a
solution to the original problem. A formal proof can ensure correctness.

2.3 Encoding as a mathematical object

We have seen in the previous section that hc can be reduced to Sat via an encoding. But not
all encodings are like the one from the previous section. For example, auxiliary variables not
associated with objects in the problem are often introduced to reduce the number of clauses
in the formula. Since encodings can take many forms, and since we wish to formally prove
that encodings are correct, we need a mathematical foundation for what an encoding is.

In this work, we concern ourselves with the encodings of n-ary Boolean relations. Our
assumption may seem a restriction, but as we saw in Section 2.2, by relating mathematical
objects to sets of Boolean variables, we can easily transform our problem into one in terms of
a Boolean relation.

Let x1, . . . , xn represent the inputs to an n-ary Boolean relation R, and let F be a formula.
When vars(F ) ⊆ {x1, . . . , xn}, then we say that F encodes R if and only if it defines it: for
every full assignment τ on x1, . . . , xn, we require R(τ(x1), . . . , τ (xn)) when τ(F ) = ⊤. Yet F
may introduce additional variables. The following definition handles the more general case.

Definition 2.1 (Encoding a Boolean relation). Let R be a Boolean relation, F be a formula,
and x1, . . . , xn be variables representing the inputs to R. Then F encodes R if and only if
the following holds: for every assignment τ to x1, . . . , xn, R(τ(x1), . . . , τ(xn)) if and only if
F is satisfied by some assignment that extends τ .

Using the language of quantified propositional logic, this amounts to saying that R is

5



2.4. ENCODINGS IN PRACTICE

defined by ∃y1, . . . , ym F , where the yi are the additional variables appearing in F . It may
help to think of the yi as auxiliary objects that are required to satisfy their descriptions in F .

A special case of Definition 2.1 is where R is defined by a Boolean function f whose inputs
are in the relation exactly when f(τ(x1), . . . , τ(xn)) = ⊤.1 However, using a relation in the
definition is more general and allows us to prove encodings of relations whose defining Boolean
function is the set of inputs on which it evaluates to false, for example. Our correctness
proofs are all based on the former special case, so unless otherwise noted, we refer to an
encoding of a Boolean function as the encoding of the relation it defines. At some points, we
note some encoding tricks to achieve an encoding of the negated function as well.

Definition 2.1 gives us a way to prove that formulas encode relations, and thus to prove
that encodings are correct. But once we have established that a formula F1 defines a relation
R, we may find it easier to prove that a different formula F2 is correct by relating it to F1

rather than to R. Perhaps F1 and F2 share clauses.
So suppose that F1 and F2 are formulas, viewed as encoding Boolean relations whose

inputs are represented by a set of variables S. In general, F1 and F2 may contain other
variables as well. The next definition says that they encode the same relation.

Definition 2.2 (S-equivalent). Let F1 and F2 be Boolean formulas and let S be any set
of variables. Then F1 and F2 are S-equivalent if and only if the following holds: for every
assignment τ such that vars(τ) = S, F1 is satisfiable by an assignment extending τ if and
only if F2 is satisfiable by an assignment extending τ .

In quantified propositional logic, the definition is equivalent to saying that ∃y1, . . . , ym F1 is
logically equivalent to ∃z1, . . . , zℓ F2, where y1, . . . , ym, z1, . . . , zℓ are the variables that are not
contained in S. When S contains all the variables in F1 and F2, i.e. S ⊇ vars(F1) ∪ vars(F2),
saying that F1 and F2 are S-equivalent is the same as saying that they are logically equivalent.
At the other extreme, when S = ∅, saying that F1 and F2 are S-equivalent is the same as
saying that F1 and F2 are equisatisfiable. The following is easy to check:

Lemma 2.3. Suppose F1 encodes an n-ary Boolean relation R, where the inputs of R are
represented by x1, . . . , xn. If F1 and F2 are {x1, . . . , xn}-equivalent, then F2 encodes R also.

2.4 Encodings in practice

Any problem we wish to encode into Sat may admit many encodings. If each encoding
is correct, then a true oracle does not care which we choose. But in practice, solvers are
sensitive to the choice of encoding. Most state-of-the-art solvers only accept formulas in CNF,
and only in DIMACS format, which is a standard input format where literals are represented
as signed integers.2 Solvers also tend to perform better (and time out less) on compact and
arc-consistent encodings, which we define below. Since solvers are computationally-bound
objects, researchers prefer these encodings.

1In fact, for any relation R, there is a defining Boolean function f with this property.
2The DIMACS format is defined at https://www.cs.utexas.edu/users/moore/acl2/manuals/

current/manual/index-seo.php/SATLINK____DIMACS.
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2.4. ENCODINGS IN PRACTICE

Compact encodings

Two metrics used to determine the utility of various encodings are the number of variables and
the number of clauses in formulas that encode an n-variable Boolean relation. For example,
our encoding from Section 2.2 required n variables and O(n3) clauses. By introducing auxiliary
variables, one can reduce the number of clauses in the encoding, at the cost of increasing the
number of variables.

Researchers have engaged in the empirical study of whether encodings with fewer clauses
and variables are truly more effective. Marques-Silva and Lynce [48] showed that making
encodings of cardinality constraints more compact resulted in a clear performance boost.
Nguyen et al. showed a solver preference for smaller encodings for the at-most-one function [45].
Interviews conducted by Björk indicate that Sat experts prefer compact encodings for their
domain-specific problems, although the search for an optimal encoding for any fixed class of
problems or solver is not straightforward [8]. The general sentiment is that while the optimal
encoding for any single instance is problem-dependent, encodings with fewer clauses tend to
outperform direct encodings with a super-linear number of clauses.

As a result, several methods for reducing formula size have been investigated. Bounded
variable elimination [22] is one such crucial processing technique that shrinks the size of the
encoding to boost solver performance. Another is the Tseitin transformation [55], which
transforms formulas into equisatisfiable ones via the introduction of auxiliary variables. The
transformed formulas have length linear in the input formula size. We will encounter the
Tseitin transformation in Chaper 5.

Consistency and arc-consistency

Many Sat solvers use internal heuristics to determine whether a candidate partial assignment
is valid for an input formula. One common heuristic is unit propagation, which continually
extends the partial assignment based on any present unit clauses until fixpoint. Some
encodings behave well under unit propagation and so are better choices for solvers that use
unit propagation. Such encodings are called consistent and arc-consistent.

First, let us discuss how unit propagation works. Assume that our input formula F is in
CNF. A (disjunctive) clause C ∈ F is unit under a partial assignment τ if one literal x is
unassigned by τ while all other literals are assigned to false. Because C is a disjunction, the
only way to satisfy C is to make x true. We can thus extend τ by setting x = ⊤.

Once τ has been extended, we can remove any clause in F that contains x, as those
clauses are now satisfied. Instances of x are removed, as now x = ⊥ and so cannot satisfy any
clauses it appears in. Clauses that become unit induce another round of unit propagation;
clauses that become empty signal that a contradiction has been reached, and that the partial
assignment cannot be correct. Unit propagation proceeds until a contradiction is reached or
until all remaining clauses are not unit.

An encoding of a Boolean function is consistent if, for any partial input to the Boolean
function that cannot be extended to an input that makes it true, unit propagation on the
encoded formula using the partial input as a partial assignment should result in a conflict.
For example, if n ≥ 3 and our Boolean function f is

f := x1 + x2 + · · ·+ xn ≤ 2,

7



2.4. ENCODINGS IN PRACTICE

then if our partial input sets x1 = x2 = x3 = ⊤, it is clear that no full extended input will
cause f to evaluate to true. A consistent encoding for f would take τ = {x1 = x2 = x3 = ⊤}
as a partial assignment and derive a contradiction via unit propagation.

An encoding of a Boolean function is arc-consistent if it is (1) consistent and (2) unit
propagation on the encoding using the partial input as a partial assignment eliminates the
extensions to the partial input that would make the function evaluate to false. In the above
example, if a partial assignment τ = {x1 = x2 = ⊤} is given to an arc-consistent encoding
for f , then all other xi would be set to ⊥ under unit propagation.

We note that while arc-consistency is an important aspect for encodings to have, as arc-
consistent encodings generally achieve better solver performance than direct encodings [26],
our proof library presented in Chapter 4 does not prove arc-consistency. However, the
encodings that we do consider in our library happen to be arc-consistent. Proving that these
encodings are, in fact, arc-consistent is a line of future work.
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Let’s start at the very beginning,
a very good place to start.

Rodgers and Hammerstein, The Sound of Music 3
Lean Primer

Our library of verified Sat encodings uses the Lean 3 interactive theorem prover [21]. In this
chapter, we describe Lean’s relevant features and syntax.

Readers that are already familiar with Lean can skip this chapter. Readers familiar with
a different theorem prover, such as Coq [7] or Isabelle/HOL [46], may wish to skim this
chapter, as Lean’s syntax may differ slightly from other theorem provers’.

3.1 Theorem provers, generally

The study of formal mathematical and logical systems often concerns itself with proof— how
to find one, how to express one, and how to check one. Theorem provers are tools that
leverage the power of computers to automate aspects of proof search and proof checking.

A theorem prover reasons about and within a formal system, which is a set of axioms
and reasoning rules which allow true statements to be derived from other true statements.
Peano’s axioms for natural numbers is a famous set of five axioms. An example of a reasoning
rule is the law of modus ponens (or implication elimination), which states that if one has a
proof of A ⊃ B and a proof of A, one can produce a proof of B:

A ⊃ B A
B

Theorems are statements written in the formal system that can be proved from the axioms,
the reasoning rules, and a possibly empty set of additional assumptions. Proofs of theorems
can use lemmas, but each lemma must also be proved from the axioms, rules, and assumptions,
and thus any theorem can be unrolled into its basic components.

Theorem provers attempt to find proofs using the axioms and rules of the formal system,
and possibly also supporting lemmas and theorems available in a proof library. At any point,
many possible axioms or rules may apply to the statement, and the theorem prover must
choose which to use. Without human intervention, a theorem prover may have to try all
possible options to find a proof. Theorem provers that perform proof search without human
interaction are called automated theorem provers (atps). Vampire [39] is an example.

Theorem provers that depend on human interaction are called interactive theorem provers
(itps) or proof assistants. Lean, Coq, and Isabelle/HOL are all examples of itps. Proof
assistants require that a statement, or goal, be proven in an incremental fashion, where each
step is an application of an axiom, rule, or lemma. As a result, the final proof object can be
machine-checked for soundness.

9



3.2. LEAN

Of course, that’s not to say that itps can’t automate proof search. Lean’s simp, Coq’s
simpl, and Isabelle’s sledgehammer tactics all mechanically search through a selected subset
of theorems in an attempt to finish the proof, or at least to make forward progress. itps
also sometimes incorporate tools such as linear arithmetic solvers or smt solvers to assist in
advancing or finishing proofs.

3.2 Lean

Lean is an itp based on the calculus of inductive constructions [14, 15]. Specifically, its
logical foundation a version of dependent type theory with inductive types, type universes,
and an impredicative type of propositions. By default, Lean’s core logic is constructive, but
classical logic proofs can be enabled. Lean’s type checker runs on a small trusted kernel
written in C++.

There are several available versions of Lean. We use Lean 3 and its associated proof library,
mathlib [42], in this thesis. At the time of publication, Lean 4 is currently in development.
Both versions can be downloaded for free on the Lean website. mathlib can be found on
GitHub. Unless otherwise noted, the following description of Lean applies to Lean 3, although
much of it applies to Lean 4 as well.

Lean defines a small set of types that are common in functional programming and in
mathematics, including natural numbers, lists, sets, and strings. Lean’s elaborator is powerful
enough to detect “holes” left in proofs where types can be inferred.

Figure 3.1 shows a simple tactic proof where if there are two elements in a list that
aren’t equal to each other, then the list has length at least two. Let us examine the proof to
understand Lean’s syntax and how tactics work.

theorem length_ge_two {α : Type*} {a b : α} (a ̸= b) {l : list α} :

a ∈ L → b ∈ l → 2 ≤ length l :=

begin

intros ha hb,

cases l with x xs,

{ exact absurd ha (not_mem_nil _) },

{ cases xs with y ys,

{ rw mem_singleton at ha hb,

rw ← hb at ha,

contradiction },

{ rw [length, length, add_assoc, one_add_one_eq_two],

exact le_add_self } }

end

Figure 3.1: A simple proof that a list with two distinct elements is at least two elements long.

Theorems in Lean begin with theorem or lemma and then an identifying name. What
follows is a series of assumptions or hypotheses, and then the statement of the theorem.
length_ge_two mixes explicit and implicit hypotheses. The hypotheses that α is a type, that
a and b are elements of type α, and that l is a list whose elements are of type α are implicit,
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indicated by the curly braces {}. The hypothesis that a ̸= b is explicit, indicated by the
parentheses (). Since a ̸= b uses the fact that a and b are of type α, and thus that α is a
type, then the latter hypotheses can be left implicit. Lean’s elaborator can infer the latter
hypotheses given one of the form a ̸= b. The hypothesis that l is a list of type α is implicit
because l is mentioned in the theorem statement. It is convention to leave assumptions
implicit if they appear in later hypotheses; doing so reduces the number of arguments required
when using a theorem, as most hypotheses can be inferred, and thus omitted.

The rest of the theorem is stated mathematically: if we know that a and b are both
members of list l, then we can infer that l has at least two elements (length l returns a
natural number representing the number of elements in the list). The → indicates a curried
type, much like a curried function in functional programming languages.1

Lean allows for two kinds of proof: declarative and tactic. Figure 3.1 shows a tactic
proof, which proceeds line-by-line through rewrite rules, axioms, and supporting lemmas to
accomplish the goal of the theorem.

We start by adding the hypotheses a ∈ L and b ∈ l to the current context with intros.
Before starting our proof, the context includes the hypotheses that a and b are elements of
type α, etc. After assuming these hypotheses, our goal is to show that 2 ≤ length l.

The proof then proceeds by casing on the form of l. Lists are defined inductively as either
nil or as cons x xs of an element with the rest of the list (similar to cons from Lisp, Haskell,
and OCaml). cases splits the goal into two goals, where in one goal, we assume that l is nil,
and in the other, that l is cons x xs. In both branches, l is automatically replaced by the
term of the appropriate form, both in the context and in the goal.

In the nil case, we find that our hypothesis a ∈ L has become a ∈ nil. Nothing can be
a member of the empty list, as not_mem_nil states. We close our goal with absurd, which
takes a hypothesis p and its negation ¬p and provides the proof of any other proposition q.

In the cons x xs case, we case on the form of xs. In the first branch, we find that a

and b are both equal to x, as they are members of a singleton list [x]. But that gives a
contradiction with our assumption that a ̸= b. Contradictions close the proof branch just as
with absurd.

In the second branch, we reduce our hypotheses using the rewrite rw tactic until we are
left with a goal of 2 ≤ length ys + 2. The theorem le_add_self closes the proof.

There are many more tactics available than those used in Figure 3.1. One commonly used
tactic is induction, which invokes an induction rule associated with a type. For example,
induction n when n is a natural number transforms the current goal into two: one where
n is zero, and the other where n is the successor of another natural number and where an
induction hypothesis is made available.

We refer interested readers to the learning page on the Lean community site for in-depth
tutorials covering installation and setup and how to write tactic proofs.

1An instance of the Curry-Howard isomorphism [53].
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I do not fear computers. I fear the lack of them.

Isaac Asimov 4
Library for verified encodings

In this chapter, we present the main features of our library for verified Sat encodings. All
the proofs and instructions for how to compile them can be found at the following URL:

https://github.com/ccodel/verified-encodings

All files referenced in this work are hyperlinked to a frozen branch of the repository.
Our library is written in Lean 3 and makes liberal use of theorems from mathlib on

natural numbers, lists, sets, and functions. We also depend upon Lean’s simplifier to automate
term rewriting and shorten proofs.

The library is roughly divided into three parts: (1) CNF representations, (2) supporting
objects and functions, and (3) proofs of correctness. We discuss the former two here.

4.1 CNF representations

To formally verify theorems about Boolean formulas, we must first decide on a representation
for them in Lean. Because many Sat solvers require formulas be in conjunctive normal form,
we focus on a representation of CNF formulas.

To avoid using a specific type for Boolean variables (e.g. integers or strings), we use an
arbitrary type V. Literals are either positive (Pos v) or negative (Neg v) forms of a variable v.
Truth assignments are maps from the variable type V to a Boolean value.

Clauses and formulas are represented by lists of literals and clauses, respectively. One
possibility would have been for them to be sets instead. Yet lists are a natural representation
for clauses and formulas and have several benefits over sets. First, functions using lists
in Lean’s native functional programming language are computable, meaning that Lean’s
evaluator can produce real output; using sets would require more busywork to achieve the
same end. Second, lists are a natural representation of DIMACS format, which specifies that
formulas are lists of clauses, each of which is a list of literals. Third, many Sat solvers treat
formulas as multisets—as lists—and so treating formulas as sets would not accurately capture
how many solvers work [9].

The types for our CNF representations are summarized in Figure 4.1.
Our library defines and proves properties of operations on these types. We discuss a few

notable ones here. The first is evaluation of clauses and formulas under an assignment. For
example, the evaluation of a clause is implemented as the following:
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inductive literal (V : Type*)

| Pos (v : V) : literal

| Neg (v : V) : literal

def clause (V : Type*) := list (literal V)

def cnf (V : Type*) := list (clause V)

def assignment (V : Type*) := V → bool

Figure 4.1: Types of clauses and CNF formulas in our library.

def eval (τ : assignment V) (c : clause V) : bool :=

c.foldr (λ l b, b || (l.eval τ)) ff

In this definition, foldr is the usual fold operation on lists, and l.eval τ is the evaluation of
a literal under τ . True and false in Lean are written as tt and ff, respectively. The evaluation
of a CNF formula is written similarly. We chose built-in list operations over custom-written
functions to shorten proofs with help from mathlib.

The expressions c.foldr and l.eval are instances of Lean’s anonymous projection notation.
Because l is inferred to have type literal, Lean interprets l.eval τ as literal.eval l τ ,
inserting l as the first explicit argument of the correct type. Similarly, because the type
clause V reduces to list V, Lean interprets c.foldr as list.foldr c. The notation is
convenient and we use it often.

We prove many theorems involving evaluation. A couple examples of useful theorems are
below. The first theorem states that a clause evaluates to true only when there is a literal in
it that evaluates to true. Its complement is that a clause evaluates to false only when all
literals in the clause evaluate to false.

theorem eval_tt_iff_exists_literal_eval_tt {τ : assignment V} {c : clause V} :

c.eval τ = tt ↔ ∃ (l : literal V), l ∈ c → l.eval τ = tt

theorem eval_ff_iff_forall_literal_eval_ff {τ : assignment V} {c : clause V} :

c.eval τ = ff ↔ ∀ (l : literal V), l ∈ c → l.eval τ = ff

Other operations on clauses include counting the number of literals that evaluate to true
under an assignment (count tt), counting the number of literals in one clause which are
negations of literals in another (count flips), constructing a clause containing a list of
variables such that it evaluates to false under an assignment (falsify), and constructing
vars(·) for a clause (vars). The definitions for these operations are listed in Figure 4.2. We
prove theorems about these operations as well.

All definitions of and proofs for these types can be found at cnf/*.lean. The proofs are
more numerous and general than is required for our encoding correctness proofs, and so they
stand as a basis for future verification efforts.
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def count_tt (τ : assignment V) (c : clause V) : nat :=

c.countp (literal.is_true τ)

def count_flips : clause V → clause V → nat

| [] _ := 0

| _ [] := 0

| (l :: ls) (m :: ms) := ite (l.flip = m)

(1 + count_flips ls ms) (count_flips ls ms)

def falsify (τ : assignment V) (l : list V) : clause V :=

l.map (λ v, cond (τ v) (Neg v) (Pos v))

def vars : clause V → finset V

| [] := ∅
| (l :: ls) := {l.var} ∪ (vars ls)

Figure 4.2: Selected clause operations. literal.is_true returns true when a provided literal
evaluates to true under τ . l.flip takes Pos v to Neg v and vice versa. cond and ite are
conditional checks where tt gives the first branch and ff, the second.

4.2 Gensym

As mentioned previously, many encodings introduce additional auxiliary variables to reduce
formula size. The process of fresh variable generation must be represented in our library for
us to be able to define and prove the correctness of those kinds of encodings.

For mathematicians (and most computer scientists), generating fresh variables is easy:
one assumes that there exists a set with enough fresh variables and that these variables can
be chosen at will. But we must be pedantic when we use Lean. We take inspiration from
de Bruijn indices [19] and gensym objects [23] (such as in Lisp1) to create our own gensym

object that generates fresh variables. We then prove that these variables don’t collide with
themselves or with variables already present in the formula. These proofs can be found at
cnf/gensym.lean.

A gensym object is a pointer n on the natural number line and an injective function
f : N→ α for α arbitrary. The gensym’s pointer starts at n = 0. Requests for fresh variables
can be made to the gensym via calls to fresh. fresh produces a new variable f(n) and an
updated gensym object with an incremented pointer n := n+ 1. Because f is injective, then
as n monotonically increases, the created variables f(n) will all be distinct. We define the
stock of a gensym to be the set of elements the gensym could produce. More formally, the
stock S of a gensym g with offset n is

S(g) := {x : α | ∃ d ∈ N, f(n+ d) = x}.

In the case that a gensym object should ignore a set of elements in its stock, the function
seed can be used. When given a bijection f : N↔ α and a set X to avoid, seed creates a

1See https://franz.com/support/documentation/10.1/ansicl/dictentr/gensym.htm.
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structure gensym (α : Type *) := (n : nat) (f : nat → α) (f_inj : injective f)

def init (f : nat → α) (f_inj : injective f) : gensym α :=

{ n := 0, f := f, f_inj := hf }

def fresh (g : gensym α) : (α × gensym α) := ⟨g.f (g.n), ⟨g.n + 1, g.f, g.f_inj⟩⟩

def nth (g : gensym α) (n : nat) : α := g.f (n + g.offset)

def stock : set α := { a | ∃ (n : nat), g.f (g.offset + n) = a }

def seed (f : nat → α) (f_inj : injective f) (fi : α → nat)

(fi_inj : injective fi) (rinv : right_inverse f fi) : list α → gensym α
| [] := init hf

| l := { n := 1 + max_nat (map fi l), f := f, f_inj := hf }

Figure 4.3: Gensym operations for fresh variable generation.

gensym where the offset n starts at one more than the maximum value f−1(x) attained by
any x ∈ X. Since f is injective, setting n := maxx∈X f−1(x) + 1 makes S(g) ∩X = ∅.

fresh should be used when the definition of an encoding is recursive in nature: at any
one function call, the needed variables can be generated, and then the new gensym can be
passed to the recursive call. We use this strategy in the definition of an xor encoding in
Chapter 5. But when an encoding is defined without recursion, the gensym operation nth

may be more appropriate. nth takes in a natural number i and returns the variable generated
by the gensym after i+ 1 calls to fresh.

The definitions of the gensym and its associated functions are listed in Figure 4.3. The
function max_nat finds the maximum natural number when mapping elements in l under fi.
Note that for seed, functions f and fi form the combined bijection for f . f is split into two
functions to keep the function computable in Lean.

An equivalent definition for a gensym object would be to only track the injective function
f . fresh would return an updated gensym where f := (λn, f(n+ 1)). seed can be modified
in a similar way to restrict the stock of the created gensym. We chose the offset representation
because it was easier to reason about natural numbers than anonymous lambda functions.

In practice, encodings follow the DIMACS format. In encoding implementations, it is
often the case that a global counter is used for variable generation. The counter is initialized
to 1 (as DIMACS prevents any literals taking on the value 0). Whenever a new variable
is required, the value of the counter is taken, and then the counter is incremented. In this
way, the global counter represents a gensym object. The increment operation on the counter
ensures the injectivity of fresh, and if the counter needs to avoid certain numbers, it can be
initialized to a sufficiently large enough value, like what seed does.

When implementing encodings using gensym, an assumption that the input list of literals
is disjoint from the stock of the gensym is required to ensure that fresh variables do not clash
with variables already present. In practice, a global counter suffices.
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def encodes (f : list bool → bool) (F : cnf V) (l : list (literal V)) :=

∀ τ, (f (l.map (literal.eval τ)) = tt ↔
∃ σ, F.eval σ = tt ∧ (τ ≡(clause.vars l)≡ σ))

def sequiv (F1 F2 : cnf V) (s : finset V) := ∀ τ,
(∃ σ1, F1.eval σ1 = tt ∧ (τ ≡s≡ σ1)) ↔
(∃ σ2, F2.eval σ2 = tt ∧ (τ ≡s≡ σ2))

Figure 4.4: The Lean representation of Definition 2.1. Note that because assignments are full
maps τ : V → B, extension is handled via eqod, whose syntactic sugar is ≡ ≡.

4.3 Notions of encoding

The goal of our library is to prove that CNF formulas encode Boolean functions. In order to
write such proofs, we require a representation of what an encoding is in Lean.

We express Definition 2.1 and Definition 2.2 in a straightforward manner. See Figure 4.4.
Note that the input to encodings is a list of literals, but the input to Boolean functions is a
list of Booleans. In the definition for encodes, we map the truth assignment τ on the list l
to transform it into a list of Booleans.

The definition requires a notion of what it means to extend an assignment. We have
chosen to make assignments maps from the variable type V to the boolean type bool. Thus,
any assignment is a full assignment. To signify that two assignments share evaluations on a
finite set of variables, we introduce a definition for eqod, short for equivalent-on-domain. The
definition is

def eqod (τ1 τ2 : assignment V) (s : finset V) : Prop :=

∀ v ∈ s, τ1 v = τ2 v

A finset is a set type with a finite number of elements. To say, then, that an assignment σ
extends τ , it suffices to specify that σ and τ agree on the variables of interest, and then that
σ satisfies some other property, such as satisfying a CNF formula. The definition for eqod
and associated theorems can be found at cnf/assignment.lean.
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5
xor encodings

The n-ary Boolean xor function is commonly encountered in the translations of problems into
Sat, such as in cryptography [40, 52], in approximate model counting [51], in the creation of
matrix multiplication schemes [35, 43], and in the construction of set membership filters [58].
Many xor encodings have been proposed [5, 29, 30, 43]. To the best of our knowledge,
xor encodings remain unverified. A lack of verification for these encodings means that,
for example, analyses of cipher integrity with a Sat solver cannot be fully trusted, which
introduces potential security risks in systems that use those ciphers. Our correctness proofs
provide that trust.

In this chapter, we define the direct and Tseitin encodings for the xor function, and then
formally prove their correctness in Lean. The proofs mirror the pen-and-paper correctness
proofs. However, the proof methods and supporting lemmas developed in Lean are more
general and allow for easier implementation of future direct and recursive encodings of other
Boolean relations and functions.

5.1 Encoding definitions

If x and y are Boolean values, then x⊕ y = ⊤ iff exactly one of x and y are true. We can
extend this definition to include any number of Boolean values x1, . . . , xn.

Definition 5.1 (Boolean xor function). The xor of n Boolean values is

xor(x1, . . . , xn) := x1 ⊕ · · · ⊕ xn = ⊤ iff an odd number of the xi are ⊤.

It is a simple matter to express xor in terms of elementary propositional connectives, as

x⊕ y ≡ ¬(x↔ y) ≡ (x ∧ y) ∨ (x ∧ y) ≡ (x ∨ y) ∧ (x ∨ y).

The translation of xor can be performed recursively, setting x = x1 and y = xor(x2, . . . , xn).
However, many solvers would not accept such an input formula. A CNF encoding is needed.

The direct encoding

The first CNF encoding we will examine is the direct or naive encoding. The direct encoding is
the most straightforward and introduces no additional literals, but also results in exponential
blowup: the resulting formula has 2n−1 clauses. Such a formula quickly becomes intractable
for solvers, so the direct encoding is not recommended above small n.
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Definition 5.2 (Direct encoding of xor). The direct encoding of the xor function on literals
x1, . . . , xn is

direct(x1, . . . , xn) =
∧

even number of negations

(
± x1 ∨ · · · ∨ ±xn

)
.

Note that the negations are performed on an even number of literals, regardless if they
are positive or negative, as the example shows.

Example 5.3. The direct encoding of x1 ⊕ x2 ⊕ x3 is

direct(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

It is not hard to see that when τ satisfies direct(x1, . . . , xn), xor(τ(x1), . . . , τ (xn)) = ⊤,
and vice versa. In other words, the direct encoding is a CNF definition of xor. To see why,
consider such a satisfying τ . Because the direct encoding is in CNF, all its clauses must
evaluate to true. An odd number of the xi must evaluate to true under τ , since otherwise, the
clause with exactly those even number of xi negated in the direct encoding would evaluate to
false, a contradiction. But that is precisely when xor evaluates to true, by definition.

More generally, any Boolean function f has a direct CNF definition which is essentially a
spelled-out truth table. Let X := {x1, . . . , xn} be the n Boolean inputs to f , let S ⊆ X with
|S| := k, and let τ be an assignment with vars(τ) = S. Then if for all extended assignments
σ from τ with vars(σ) = X, it is the case that f(σ(x1), . . . , σ(xn)) = ⊥, then the clause

C = ¬

(
k∧

i=1

xτ
Si

)
≡

k∨
i=1

xτ
Si

is in the CNF definition. We mean xτ = x when τ(x) = ⊤ and xτ = x otherwise. In other
words, for each subset of the variables in X with a partial assignment that cannot be extended
to a full assignment that makes f true, a clause is added to the CNF definition disallowing
the partial assignment.

For many common Boolean functions, such as xor and pseudo-Boolean constraints,
direct encodings are sometimes chosen for their simplicity. However, they often require a
super-linear, or even an exponential, number of clauses, and so are not the preferred encoding
above small n.

The Tseitin encoding

The direct encoding produces formulas which are too large for solvers above small n. More
compact encodings are required for practical application. To that end, we turn to a common
method for reducing the size of an encoding: the Tseitin transformation [55].

The Tseitin transformation is a general method of transforming arbitrary formulas in
propositional logic into CNF such that the resulting formula is equisatisfiable with the
original. Transformed formulas have the additional property of having length linear in the
input formula size. By recursively introducing auxiliary literals via if-and-only-if relations
with subformulas, the original formula can be rewritten without exponential blowup.
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To get a sense of how the Tseitin transformation works, consider a propositional logic
formula F = F1 • F2, where • is an arbitrary binary Boolean connective. One round of the
Tseitin transformation introduces a fresh literal y to produce the following formula:

T (F ) = (F1 ↔ y) ∧ (y • F2).

Depending on the sizes of F1 and F2, the transformation may recurse into the subformulas.
It may also unfold the operator • into CNF: for example, if • = (↔), then y ↔ F2 becomes
(y ∨ F2) ∧ (y ∨ ¬F2). Because new literals are introduced via if-and-only-if relationships, the
transformed formula T (F ) is equisatisfiable with F .

We can use the same strategy for xor. We first fix a cutting number k ≥ 3 which
determines how large our subformulas are. We then replace a (k − 1)-literal portion of the
xor with a fresh literal and recurse. The transformation has length linear in n.

Tk(xor(x1, . . . , xn)) = (xor(x1, . . . , xk−1)↔ y) ∧ (y ⊕ Tk(xor(xk, . . . , xn))) (k < n).

We note two things. First, a ↔ b is equivalent to a ⊕ b, so we pull y into the xor by
writing xor(x1, . . . , xk−1) ↔ y as xor(x1, . . . , xk−1, y). Then, to produce a subformula in
CNF on these k literals, we replace xor(x1, . . . , xk−1, y) with direct(x1, . . . , xk−1, y). If k
is small, then the resulting number of clauses is not too large.

Second, the connective joining y and Tk(xor(xk, . . . , xn)) is the same as the connectives
joining xk, . . . , xn. So as before, we move y into the subformula. Since the binary ⊕ connective
is commutative, we have a choice of where to place y. One method is to place y in the
leftmost position to read Tk(xor(y, . . . )). Another method is to place y in the rightmost
position to read Tk(xor(. . . , y)). Encodings that use the former method are called linear ;
the latter, pooled. To see why, consider several steps of each method with k = 3 and with the
direct encoding notated as D(. . . ). The linear method produces the following formula:

linear3(x1, . . . , x6) = D(x1, x2, y1) ∧ linear3(y1, x3, . . . , x6)

= D(x1, x2, y1) ∧D(y1, x3, y2) ∧ linear3(y2, x4, x5, x6)

= D(x1, x2, y1) ∧D(y1, x3, y2) ∧D(y2, x4, y3) ∧D(y3, x5, x6)

Skipping the intermediate steps, the pooled method produces the following formula:

pooled3(x1, . . . , x6) = D(x1, x2, y1) ∧D(x3, x4, y2) ∧D(x5, x6, y3) ∧D(y1, y2, y3).

Note how in the linear method, the yi literals bookend each subformula, whereas in the pooled
method, the yi literals appear only in the rightmost position of each subformula and then are
grouped all together in the final subformula. This difference may seem minor. However, it
can have a big impact on solver performance [43]. For example, consider an assignment that
satisfies the function ⊕(x1, . . . , xn) but falsifies the two clauses containing the literals x1 and
xn in both encodings. The linear encoding would then require O(n) updates to its yi literals
to make the formula evaluate to true, while the pooled encoding would only require O(log n)
updates to its yi literals.

The choice of cutting number is also critical for solver performance. When k is larger,
each encoding introduces fewer auxiliary variables, but at a cost of larger direct encoding
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subformulas. Depending on the application, different cutting numbers are optimal. Soos and
Meel argue for an optimal cutting number of k = 4 [51], while cutting numbers of k = 6 or
k = 7 appear optimal for applications in cryptography [5, 43]. In our correctness proof, the
cutting number is arbitrary.

We now formally define the encodings discussed above. We highlight the linear and pooled
encodings in this work because they are the two most common Tseitin encodings of xor.

Definition 5.4 (Tseitin transformations for xor). Fix k ≥ 3. Then the linear and pooled
encodings for n literals are

lineark(x1, . . . , xn) =

{
direct(x1, . . . , xn) n ≤ k

direct(x1, . . . , xk−1, y) ∧ lineark(y, xk, . . . , xn) o.w.

pooledk(x1, . . . , xn) =

{
direct(x1, . . . , xn) n ≤ k

direct(x1, . . . , xk−1, y) ∧ pooledk(xk, . . . , xn, y) o.w.

where in both cases, y is fresh.

Both the direct and Tseitin encodings encode the Boolean relation defined by the Boolean
function xor(x1, . . . , xn) = ⊤. To encode the relation defined by xor(x1, . . . , xn) = ⊥, one
can instead encode xor(⊤, x1, . . . , xn) = ⊤ using either the direct or Tseitin encodings, as
⊤⊕ x = x. Equivalently, one can encode xor(z, x1, . . . , xn) = ⊤ and add the unit clause z.

The Tseitin transformation can also be used more generally to embed sub-encodings into
formulas. For example, suppose the formula F was

F = xor(x1, . . . , xn) ∧ (x1 ∨ z1 ∨ z2) ∧ . . . .

Then a fresh variable y can be introduced and set in an iff relation with xor(x1, . . . , xn).
Every instance of xor(x1, . . . , xn) can then be replaced by y. But as we saw above,

xor(x1, . . . , xn)↔ y ≡ xor(x1, . . . , xn, y),

so we may write

F ≡ (xor(x1, . . . , xn, y)) ∧ y ∧ (x1 ∨ z1 ∨ z2) ∧ . . . .

Then, one can choose one’s favorite encoding for xor (perhaps the linear encoding) as part of
converting F into CNF. In this way, Boolean functions which are sub-constraints of a formula
F can be encoded efficiently without affecting the other constraints. Similar strategies can
be used for other Boolean functions, such as the at-most-one function.

5.2 Lean representations

We now present the Lean representations of the xor function and the encodings from the
previous section. We implement them in Lean’s native functional programming language.
Files for the definition of xor and all xor encodings can be found at xor/*.lean.
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The xor function is represented as a function that takes in a list of Boolean values and
returns a single Boolean value. The evaluation of a list of literals under xor and under an
assignment first maps the assignment onto the literals of the list and then foldrs the result
with the binary bxor operator. The characterization of the evaluation of xor in terms of an
odd number of literals evaluating to true is given by the theorem eval_eq_bodd_count_tt.
Since the name “xor” was already defined in Lean 3, we chose Xor instead.

def Xor (l : list bool) : bool := l.foldr bxor ff

def Xor.eval (l : list (literal V)) (τ : assignment V) : bool :=

Xor (l.map (literal.eval τ))

theorem eval_eq_bodd_count_tt (l : list (literal V)) (τ : assignment V) :

Xor.eval τ l = bodd (clause.count_tt τ l)

The direct encoding

The direct encoding is defined as all clauses with an even number of negations on a list of
literals. To implement it, we require a way to generate these 2n−1 clauses. We first define a
sub-routine called explode which generates all possible (ordered) instances of positive and
negative literals on an input list of variables. explode is loosely analogous to the powerset
operator on sets, as it generates a list of 2n lists. An example demonstrates this analogy:

Example 5.5. If [x, y, z] is a list of three Boolean variables, then

explode([x, y, z]) = [[x, y, z], [x, y, z], [x, y, z], [x, y, z],

[x, y, z], [x, y, z], [x, y, z], [x, y, z]].

We implement explode as a recursive function. The first variable in the list is added to
the front of the recursive result twice: once as a positive literal, once as a negative literal.
The positive and negative cases are appended together to form the final result. The definition
of explode in Lean 3 is given here. It can be found in our library at cnf/explode.lean.

def explode : list V → list (clause V)

| [] := [[]]

| (v :: l) := (explode l).map (cons (Pos v)) ++ (explode l).map (cons (Neg v))

In our implementation of the direct encoding, we use explode to generate all possible
negations on all literals but the first, l. Then for each clause in explode, the number of
negations is compared against the input to explode. If there is an even number of negations,
then l is added. Otherwise, l is flipped.

def direct_xor : list (literal V) → cnf V

| [] := [[]]

| (l :: ls) := (explode (map var ls)).map

(λ c, ite (!bodd (c.count_flips ls)) (l :: c) (l.flip :: c))

ite is shorthand for the typical if-then-else, and bodd returns true when the natural number
passed to it is odd, and false otherwise.
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The Tseitin encoding

The Tseitin encoding is more complex than the direct encoding, as it introduces fresh variables.
We present the linear encoding here as a recursive function, but a similar setup would work
for any permutation in the recursive call.

We first fix a cutting number k ≥ 3, as specified by the hypothesis hk. We then case on
the length of the list l. If its length is at most the cutting number, the direct encoding is
used. Otherwise, the first k − 1 literals and the negated fresh literal are given to the direct
encoding. The function recurses on the remaining n− k + 1 literals and the fresh literal. The
direct and recursive formulas are combined to form the final formula.

def linear_xor {k : nat} (hk : k ≥ 3) : list (literal V) → gensym V → cnf V

| l g := if length l ≤ k then direct_xor l else

(direct_xor (l.take (k - 1) ++ [(Neg g.fresh.1)]))

++ (linear_xor ((Pos g.fresh.1) :: (l.drop (k - 1))) (g.fresh.2))

The take and drop functions return a list with only the first k− 1 elements and a list without
the first k − 1 elements, respectively. The .1 (.2) notation in g.fresh.1 is shorthand for
the first (second) element of a pair. ++ is shorthand for the list.append operation, which
concatenates the elements of the first list with the second list.

In Lean 3, the definition of linear_xor requires additional justification to show that the
computation terminates. Our proof can be found in the repository.

5.3 Proofs of correctness

We now present our proofs of correctness. All proofs follow the ones in our library.
Assume that x1, . . . , xn are n Boolean literals.

Theorem 5.6. The xor direct encoding is an encoding of xor.

Proof. We prove that the direct encoding satisfies Definition 2.1 for xor on x1, . . . , xn. In
our library, the theorem can be found at xor/direct xor.lean and is stated as:

theorem direct_xor_encodes_Xor (l : list (literal V)) :

encodes Xor (direct_xor l) l

All other proofs of correctness use encodes in this manner.
Assume that τ is an assignment. Since the direct encoding introduces no new variables, it

suffices to show that for any assignment τ on x1, . . . , xn, τ satisfies the direct encoding iff
xor(τ(x1), . . . , τ(xn)) = ⊤. Thus, we prove a stronger statement, stated in Lean as:

theorem eval_direct_xor_eq_eval_Xor (l : list (literal V)) (τ : assignment V) :

(direct_xor l).eval τ = Xor.eval τ l :=

The proof follows the intuition given after Example 5.3.
The proof is trivial when n = 0, so assume that n ≥ 1.
First, assume that xor(x1, . . . , xn) = ⊤. Then by eval_eq_bodd_count_tt, we know that

an odd number of the xi evaluate to true under τ . It suffices to show that every clause in
direct_xor l evaluates to true under τ . Every clause in direct_xor l has an even number
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of negations compared to l. A supporting lemma tells us that because the number of negated
literals in each clause (an even number) differs from the number of true xi (an odd number),
then the clause must evaluate to true under τ .

Now assume that xor(x1, . . . , xn) = ⊥. Then an even number of the xi evaluate to true.
It suffices to show that there exists a clause in direct_xor l that evaluates to false. Pick the
clause which negates precisely the xi that are true under τ . In our proof, falsify supplies
that clause. Since an even number of xi are negated in the clause, then it evaluates to false
under τ , and the clause is in the formula, as the formula contains all clauses with an even
number of negations.

The proof of Theorem 5.6 follows what it means for a direct encoding to be a CNF
definition of a Boolean function: clauses in the formula disallow assignments that would cause
the Boolean function to evaluate to false. The general method is to case on the evaluation
of the Boolean function. In the case where the function evaluates to true, then none of the
clauses in the formula evaluate to false, because the assignment is not one of the disallowed
ones. In the false case, then there is some violated constraint, which corresponds to a single
clause in the CNF definition. It suffices to identify the clause in the formula that is falsified
under the assignment.

We now turn to the correctness proofs for the Tseitin xor encodings. In our library, the
proofs can be found at xor/tseitin xor.lean.

Theorem 5.7. Let k ≥ 3. Then lineark(x1, . . . , xn) is an encoding of xor.

Proof. Fix k ≥ 3 and let τ be a truth assignment on vars({x1, . . . , xn}). The proof is by
strong induction on n. The proof is trivial when n ≤ k, as the linear encoding becomes the
direct encoding, which by Theorem 5.6 encodes xor. So assume that n > k.

Let us now prove the forward direction: that if xor(x1, . . . , xn) = ⊤ under τ , then there
exists an extending assignment σ that satisfies lineark(x1, . . . , xn). In Lean, the statement
is written as:

lemma linear_forward (hk : k ≥ 3) (hdis : disjoint g.stock (clause.vars l)) :

Xor.eval τ l = tt → ∃ (σ : assignment V),

(linear_xor hk l g).eval σ = tt ∧ (τ≡(clause.vars l)≡σ)

We require the assumption that the gensym’s stock is disjoint from the variables in l to ensure
that g produces fresh variables.

Assume that xor(x1, . . . , xn) is true under τ . Recall that the linear encoding introduces
a single fresh variable y before recursing. We want to fix the truth value of y based on the
truth values of the xi so we can apply the induction hypothesis.

Case on the truth value of xor(xk, . . . , xn) under τ . Suppose that it evaluates to true.
Then when we add y to xor(y, xk, . . . , xn), we don’t want to change the overall truth value.
Since ⊥ ⊕ x = x for any x, we see that we want y to be false. So we extend τ to a new
assignment γ by setting γ(y) = ⊥, where y is the first fresh variable generated by the gensym g.
We next apply the induction hypothesis to find that lineark(y, xk, . . . , xn) = ⊤ under some
other assignment σ, and that σ extends γ on vars({y, xk, . . . , xn}). Since σ does not extend
τ on all the xi, a combination of τ and σ′ are used as the final witness. When a literal to
be evaluated has its variable in vars(lineark(y, xk, . . . , xn)), then σ is used. Otherwise, τ is
used. Some internal lemmas show that this combined assignment extends τ .
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To finish the proof, it suffices to show that lineark(x1, . . . , xn) = ⊤ under this combined
assignment. The recursive portion of the linear encoding is satisfied by the induction
hypothesis. The direct encoding portion, direct(x1, . . . , xk−1, y), is satisfied because γ(y) =
⊤ and by our assumption that xor(xk, . . . , xn) = ⊤ under τ , then xor(x1, . . . , xk−1) = ⊥
under τ .

The proof is the same when xor(xk, . . . , xn) = ⊥ under τ , except with γ(y) = ⊥ and
with other parities flipped.

Let us now prove the reverse direction: that if there exists a satisfying assignment σ for
lineark(x1, . . . , xn) that extends τ , then xor(x1, . . . , xn) = ⊤ under τ . Since σ and τ agree
on the xi, we prove the following statement in Lean:

lemma linear_reverse {k : nat} (hk : k ≥ 3) {l : list (literal V)} {g : gensym V}

(hdis : disjoint g.stock (clause.vars l)) {σ : assignment V} :

(linear_xor hk l g).eval σ = tt → Xor.eval l σ = tt

The statement is almost sufficient, but along with the fact that σ extends τ on the xi, then
xor(x1, . . . , xn) = ⊤ under σ means the same under τ as well.

Assume that σ extends τ and satisfies lineark(x1, . . . , xn). Let y := g.fresh.1 be the first
fresh variable generated by gensym g. Since the linear encoding evaluates to true under σ, then
both direct(x1, . . . , xk−1, y) and lineark(y, xk, . . . , xn) evaluate to true under σ. We invoke
the induction hypothesis on the recursive linear encoding to derive that xor(y, xk, . . . , xn)⊤
under σ.

We now case on the value of σ(y). If σ(y) = ⊤, then by eval_eq_bodd_count_tt, an even
number of xk, . . . , xn evaluate to true under σ′. Similarly, an odd number of x1, . . . , xk−1

evaluate to true under σ. So in total, an odd number of the xi are true under σ (and thus τ),
which occurs precisely when xor(x1, . . . , xn) = ⊤, as we wished to show.

The proof is the same in the case that τ ′(y) = ⊥, except with the parities of the evaluation
of x1, . . . , xk−1 and xk, . . . , xn under τ are flipped.

Since the Tseitin encoding is recursive, the proof of Theorem 5.7 is by induction. The
general method is to produce a satisfying assignment for the recursive formula, and then
set the truth value of introduced variables to create the final truth assignment. Recursive
encodings for other Boolean functions follow a similar form to the Tseitin encoding, and so
their proofs of correctness should follow the one in Theorem 5.7.

Proof effort

We now discuss the time and lines of code (LOC) effort for the direct and Tseitin encodings
for xor.

The direct encoding is a simple encoding. Developing the supporting lemmas and
completing the proof of correctness took two person-weeks.

The Tseitin encoding is more complex and required the use of gensym. It took about one
person-week to write the gensym suite of theorems, and then two person-weeks to complete
the proof of correctness. Note that some of the results used for the Tseitin encoding came
from the direct encoding, so developing the Tseitin encoding from scratch would have taken
at around three person-weeks.
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File LOC
gensym.lean 258
xor.lean 87

explode.lean 210
direct xor.lean 223
tseitin xor.lean 550

Table 5.1: Lines of code in files associated with xor encodings.

The lines of code present in applicable files are listed in Table 5.1. Note that the LOC for
the Tseitin encoding include a proof of correctness for both the linear and pooled encodings
(the proofs are almost identical).

The greatest challenge for proving the direct encoding correct was developing mathematical
machinery to tie the meaning of the Boolean function to the kinds of truth assignments each
clause in the CNF definition disallowed. Once the connection to parity reasoning was made,
the proof followed.

The greatest challenge for proving the Tseitin encoding correct was developing the right
operations and supporting lemmas for the gensym. Not only do we require a hypothesis that
the gensym’s stock be disjoint from the variables in the list, but upon applying the induction
hypothesis, the disjointness hypothesis needed to be updated. Additional work was required
to stitch together the semi-extended assignment from the induction hypothesis with the rest
of the variables.
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6
At-most-one and at-most-k encodings

We saw in Section 2.2 that a reduction from the Hamiltonian cycle problem to Sat required
the sub-encoding for ExactlyOne. The ExactlyOne constraint appears in many problems.
For example, graph colorings can require that every vertex be colored with only one color,
and scheduling problems can require that every timeslot be used exactly once. Thus, it is
important to have a correct and efficient encoding for these applications.

One way of stating that exactly one literal should be true is that at least one (alo) should
be true and at most one (amo) should be true. The encoding for alo takes a single clause:

alo(x1, . . . , xn) =
n∨

i=1

xi.

It is clear that to satisfy the clause, at least one of the xi must evaluate to true.
The encoding for amo is not as clear. Just as for xor, many amo encodings have been

proposed [4, 24, 38, 44, 49], each with a different number of clauses and auxiliary variables.
In this chapter, we introduce two encodings for amo: a direct encoding and the Sinz

encoding [49]. We then prove them correct. We also introduce a generalization of the Sinz
encoding for the at-most-k (amk) function and prove it correct.

6.1 Encoding definitions

The at-most-one (amo) constraint is an instance of a cardinality constraint, which specifies
that among a set of inputs, a certain number of them should be true. Often, cardinality
constraints take the form of an inequality:

n∑
i=1

xi ≤ k or
n∑

i=1

xi ≥ k,

where k is a fixed constant. We interpret τ(xi) = ⊤ as meaning xi = 1 and 0 otherwise. For
amo, we take the left inequality and set k = 1.

Definition 6.1 (At-most-one function). The Boolean function amo on n Boolean values
x1, . . . , xn is

amo(x1, . . . , xn) :=
n∑

i=1

xi ≤ 1.
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The direct encoding

A CNF definition of amo disallows partial inputs which cannot be extended to a satisfying
one. It is clear that when two distinct xi are set to true in a partial input, then no full
extended input can make amo on the xi evaluate to true. Thus, the direct encoding is a
collection of binary clauses ensuring that for any distinct pair of inputs, it cannot be the case
that both are true.

Definition 6.2 (Direct encoding of amo). The direct encoding of the amo function on
Boolean literals x1, . . . , xn is

direct(x1, . . . , xn) =
∧

1≤i<j≤n

(xi ∨ xj).

The direct encoding produces
(
n
2

)
∈ O(n2) clauses and introduces no auxiliary variables.

Note that the negations of the literals are performed regardless of their polarity.

Example 6.3. The direct encoding of amo(x1, x2, x3) is

direct(x1, x2, x3) = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

The Sinz encoding

The Sinz encoding [49] is an encoding that requires 3n− 4 ∈ O(n) clauses and introduces
n− 1 fresh signal variables. The idea is that when xi = ⊤, any satisfying assignment must
then set the corresponding signal variable si = ⊤. When an si = ⊤, it forces si+1 = ⊤,
propagating the signal, and it forces xi+1 = ⊥, keeping the amo constraint satisfied.

Definition 6.4 (The Sinz amo encoding). The Sinz amo encoding on Boolean literals
x1, . . . , xn is

Sinzamo(x1, . . . , xn) =

(
n−1∧
i=1

(xi ∨ si)

)
∧

(
n−1∧
i=1

(si ∨ xi+1)

)
∧

(
n−2∧
i=1

(si ∨ si+1)

)
,

where the si are fresh and pairwise distinct.

We note that the bounds for the last collection of clauses (si ∨ si+1) run one fewer than
the other two because xn does not have a corresponding signal variable. Hence, there are
n− 1 signal variables instead of n, and 3n− 4 clauses instead of 3n− 3.

Each binary clause in the Sinz encoding is of the form (x ∨ y). The clause is logically
equivalent to x⇒ y, and thus accurately represents the idea that when xi is true, then its
signal variable si should be true (that xi ⇒ si), and so on. Figure 6.1 shows how the encoding
behaves under a truth assignment where x2 = ⊤ and all other xi = ⊥.
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x1

s1

x2

s2

x3

s3

x4

s4

. . .

. . .

Figure 6.1: The Sinz amo encoding under a satisfying truth assignment. Blue means the
literal is true under the truth assignment, and red means the literal is false. Notice how the
signal variables propagate that x2 is true, enforcing that all later xi must be false.

6.2 Lean representations

We present the Lean representation for the amo function and the encodings presented in the
previous section. All files can be found in our library at cardinality/*.lean.

The amo function simply counts the number of true Boolean values in the list and
compares it against 1. The list function count is from Lean’s standard library and returns a
natural number representing the number of elements in a list that equal a specified element.
The eval function is almost identical to the one for xor.

def amo (l : list bool) : bool := l.count tt ≤ 1

def eval (τ : assignment V) (l : list (literal V)) : bool :=

amo (l.map (literal.eval τ))

The direct encoding

We implement the direct encoding recursively. While the list is nonempty, we split it into
the first literal l and the remaining literals ls. We then take each literal in ls and create a
binary clause with l. We return a CNF formula by appending the clauses containing l to the
recursive result.

def direct_amo : list (literal V) → cnf V

| [] := []

| (l :: ls) := (ls.map (λ m, [l.flip, m.flip])) ++ (direct_amo ls)

While the above implementation is recursive, a global definition would have sufficed. The
two definitions are equivalent, especially when combined with supporting lemmas that relate
the encoding to the distinct object that we defined:

def distinct {α : Type*} (a1 a2 : α) (l : list α) :=

∃ (i j : nat) (Hi : i < l.length) (Hj : j < l.length),

i < j ∧ l.nth_le i Hi = a1 ∧ l.nth_le j Hj = a2

distinct gives a shorthand to refer to two distinct elements in a list. Supporting lemmas
allow us to relate to clauses in direct_amo using distinct without needing to always peer
into the implementation, and so our correctness proof is somewhat implementation agnostic.
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The Sinz encoding

We implement the Sinz amo encoding non-recursively. We prefer a non-recursive implemen-
tation because we found it was easier to capture the global behavior of the signal variables
than with the recursive encoding. We recommend using a non-recursive implementation for
encodings which are not inherently recursive (as opposed to the Tseitin transformation). In
the definition below, we define three helper sub-functions to generate each type of clause
found in Definition 6.4.

def xi_to_si (g : gensym V) (n i : nat) (lit : literal V) : cnf V :=

if (i < n - 1) then [[lit.flip, Pos (g.nth i)]] else []

def si_to_next_si (g : gensym V) (n i : nat) : cnf V :=

if (i < n - 2) then [[Neg (g.nth i), Pos (g.nth (i + 1))]] else []

def si_to_next_xi (g : gensym V) (i : nat) (lit : literal V) : cnf V :=

if (0 < i) then [[Neg (g.nth (i - 1)), lit.flip]] else []

def sinz_amo (l : list (literal V)) (g : gensym V) : cnf V :=

if hl : length l < 2 then [] else

join (map_with_index (λ (idx : nat) (lit : literal V),

xi_to_si g (length l) idx lit ++

si_to_next_si g (length l) idx ++

si_to_next_xi g idx lit) l)

We use the list function map_with_index, which takes each element in a list and its index in
the list (the first element has index 0, the second, 1, etc.) and transforms it under a given
function f : (N×α)→ β. We use the index to help determine if a clause should be generated
at that index, as not every xi has a corresponding signal variable.

The list function join takes each sub-formula generated by map_with_index and reduces
the list of formulas to a single list. join is the same as flat() or flatten() in some other
programming languages, such as Javascript.

Note that because our definition is non-recursive, we have to index into the gensym instead
of passing along an updated gensym. We accomplish this by using the nth operation, rather
than fresh. The injectivity of the function provided to the gensym ensures that as long as
the indexes passed to nth differ, distinct fresh variables are produced.

While our definition is non-recursive, a recursive definition is possible. We did attempt
a proof of correctness of a recursive definition first, but found it overly challenging. Our
recursive definition was the following.

def sinz_rec : list (literal V) → gensym V → cnf V

| [] _ := []

| [l1] g := []

| (l1 :: l2 :: ls) g := [l1.flip, Pos (g.fresh.1)] ::

[Neg g.fresh.1, Pos g.fresh.2.fresh.1] ::

[Neg g.fresh.1, l2.flip] ::

(sinz (l2 :: ls) g.fresh.2)
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The challenge of the correctness proof is that while the induction hypothesis gives back a
satisfying assignment for sinz (l2 :: ls) g.fresh.2, the truth values for the signal variables
in the recursive formula depend on the truth value of the first signal variable. Thus, the truth
value of the first signal variable affects all later signal variables. Contrast this with the proof
of correctness for the linear encoding for xor, which was free to set the truth value of the
first fresh variable independent of what the other fresh variables received in the extension.

One way to salvage the recursive definition is to reverse the recursion: define the encoding
on the first n− 1 variables, and then extend it to include clauses on the last. However, we
did not attempt this. Doing so may be an interesting line of future work.

6.3 Proofs of correctness

We now present our proofs of correctness. All proofs follow the ones in our library.
Assume that x1, . . . , xn are n Boolean literals.

Theorem 6.5. The amo direct encoding is an encoding of amo.

Proof. We prove that the direct encoding satisfies Definition 2.1 for amo on x1, . . . , xn. In
our library, the theorem can be found at cardinality/direct amo.lean. Assume that τ is
a truth assignment. The proof is trivial when n ≤ 1, so assume that n ≥ 2.

For the forward direction, assume that amo(x1, . . . , xn) = ⊤. Then we know at most one
of the xi evaluate to true under ⊤. It suffices to show that all clauses in the direct encoding
evaluate to true under τ . Pick any clause C = (xi∨xj) for distinct i < j. A supporting lemma
amo_eval_tt_iff_distinct_eval_ff_of_eval_tt tells us that because amo(x1, . . . , xn) = ⊤,
then if the first of any distinct pair of (xi, xj) is true, then the other must be false, else we
would have a contradiction with our assumption that amo(x1, . . . , xn) = ⊤. The lemma (and
the rest of our proof) makes use of the distinct object, which allows us to select two distinct
elements from the list l.

So now, case on the value of τ(xi). If τ(xi) = ⊤, then τ(xj) = ⊥ by the lemma, and so
τ(xj) = ⊤, satisfying C. Otherwise, xi satisfies C instead.

For the reverse direction, assume that σ is a truth assignment that satisfies the direct
encoding and extends τ on the xi. We want to show that amo(x1, . . . , xn) = ⊤ under τ .
Since σ extends τ , it suffices to show that amo(x1, . . . , xn) = ⊤ under σ instead.

The same supporting lemma tells us that if we assume that xi and xj are distinct and
σ(xi) = ⊤, then we have to show that σ(xj) = ⊥. But this is direct from the fact that there
is a clause in the direct encoding (xi, xj) that is satisfied under σ. Because σ(xi) = ⊤, that
forces σ(xj) = ⊥. As our choice of distinct xi and xj was arbitrary, we have shown that for
any distinct pair, the corresponding clause is satisfied, meaning that no two xi are both true
under σ.

There are many similarities between Theorem 6.5 and Theorem 5.6, which tells us that
there is a common proof method for proving direct encodings correct. Both proofs used
supporting facts relating xor and amo being true to some condition on their inputs. For the
former, xor was true when an odd number of the xi were true. For the latter, amo was true
when no distinct pair (xi, xj) were both true. Both allowed us to prove that no matter the
clause in the formula, it was satisfied.
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6.3. PROOFS OF CORRECTNESS

We now prove the Sinz encoding correct.

Theorem 6.6. The Sinz encoding is an encoding of amo.

Proof. We prove that the Sinz encoding satisfies Definition 2.1 for amo on x1, . . . , xn. In
our library, the theorem can be found at cardinality/sinz amo.lean. Assume that τ is a
truth assignment. The proof is trivial when n ≤ 1, so assume that n ≥ 2.

For the forward direction, assume that amo(x1, . . . , xn) = ⊤. Then at most one of the xi

evaluate to true under τ . Intuitively, we know that the truth values of the signal variables
are determined by x1, . . . , xn. If no inputs are true, then all signal variables can be false.
Otherwise, if τ(xi) = ⊤, then any sj with j < i should be false, and any sk with k ≥ i should
be true. Providing this explicit extended assignment of τ would satisfy the direct encoding.

In Lean, we implement the assignment using a bit of machinery, which we present here.

def nth_from_var (g : gensym V) (v : V) : nat → nat

| 0 := 0

| (i + 1) := if v = g.nth (i + 1) then i + 1 else nth_from_var i

def signal_truth (l : list (literal V)) (τ : assignment V) : nat → bool

| 0 := l.head.eval τ
| (i + 1) := if h : (i + 1) < length l then

(l.nth_le (i + 1) h).eval τ || signal_truth i

else ff

def sinz_tau (l : list (literal V)) (g : gensym V) (τ : assignment V) :=

λ v, if v ∈ clause.vars l then τ v else

signal_truth l τ (nth_from_var g v (length l))

The assignment is called sinz_tau. When given a list l, a gensym g, and an assignment τ ,
it creates an extended assignment according to how the elements of l behave under τ . For
variables v that are in vars({x1, . . . , xn}), the truth value of τ(v) is returned, so sinz_tau is
a proper extension of τ . Otherwise, sinz_tau takes v and attempts to match it to a signal
variable generated in the Sinz encoding. If v = si for some i, then (i − 1) is returned by
nth_from_var (note the 0-indexing). Otherwise, we don’t particularly mind what truth value
v receives under sinz_tau, as it doesn’t appear in the encoded formula.

Upon receiving such an i, the truth value of v = si is determined by signal_truth. For
our base case, when i = 1, then s1 = τ(x1). Otherwise, si is the logical OR of τ(xi) and the
truth value of si−1 under our constructed extended assignment. Our explicit construction
thus captures how signal variables should behave in the Sinz encoding.

Some lemmas help reduce sinz_tau, signal_truth, and nth_from_var into simpler forms
when v is among the signal variables. We won’t mention them here, but refer the interested
reader to the proof in our library.

We claim that σ := sinz_tau satisfies Sinzamo(x1, . . . , xn). The proof is by casing on
the form of any clause C, and then by casing on the truth values of the xi and si involved
in the clause. C is one of the three clause types as outlined in Definition 6.4. For each, we
examine the two literals in the clause. We show that for each type of clause, sinz_tau does
the appropriate thing. For example, suppose that τ(xi) = ⊥ and σ(si−1) = ⊤. Then sinz_tau

sets σ(si) = ⊤ in signal_truth, as we would expect. Setting σ(si) = ⊤ then satisfies the
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xi ⇒ si and si−1 ⇒ si clauses. We prove that clauses of the form si ⇒ xi+1 are true by using
a supporting lemma that states what σ(si) = ⊤ only when at least one of {x1, . . . , xi} are
true. Then, because we assumed that at most one of the x literals is true under τ (and thus
σ), then it must be the case that xi+1 is false under τ .

For the reverse direction, assume there exists some σ′ that extends τ and that satisfies
Sinzamo(x1, . . . , xn). We use a lemma to show that σ := sinz_tau also satisfies the formula.
We then use another lemma to show that if two distinct (xi, xj) are true under τ , then σ
cannot satisfy the formula. Thus, at most one of the xi must be true.

The lemma is a proof by induction on n that a signal variable si is true under σ only
when one of x1, . . . , xi is true. Since that forces all following xj to be false, we have our
desired result.

The key takeaway for this kind of proof is that for the forward direction, an explicit
satisfying assignment is specified outside of the proof. In contrast, in Theorem 5.7, we produced
an assignment inside the proof, based on the evaluation of xor on subformulas. We recommend
specifying an explicit satisfying assignment for non-recursive encoding implementations for
use in the correctness proofs.

For the reverse direction, we used a lemma to tie semantic meaning to what σ(si) = ⊤
means. Once that was accomplished, an induction argument shows that the semantic meaning
for each signal variable enforces that at most one xi is true. Thus, we recommend relating
semantic meaning to introduced variables using lemmas when the satisfying assignment is
specified outside the proof of correctness.

Proof effort

We now discuss the time and lines of code (LOC) effort for these two encodings.
Once the distinct object had a sufficient number of supporting lemmas, the direct amo

encoding was even easier than the direct encoding for xor. The proof of correctness took
one person-week.

It is more difficult to gauge the difficulty of the Sinz amo encoding. We initially tried
a recursive definition for two person-weeks, but found that the proof was overly difficult.
Finishing the proof of correctness for the non-recursive definition then took three person-weeks.
So, in total, the process took five.

Table 6.1 shows the lines of code in files associated with the amo encoding. Notably, the
file sinz amo.lean is the largest file in the library for an encoding at this point. The size of
the file is due to the number of supporting lemmas in place to tie semantic meaning of the
signal variables to the amo function.

6.4 The Sinz at-most-k encoding

Since we only consider a single encoding of amk, we compress the definition, Lean represen-
tation, and proof of correctness into a single section. Here, we prove correct the Sinz amk
encoding, a generalization of the Sinz amo encoding.
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File LOC
amk.lean 308
alk.lean 127

distinct.lean 200
direct amo.lean 282
sinz amo.lean 754

Table 6.1: Lines of code in files associated with amo encodings.

Definition 6.7 (At-most-k function). Let k be given. The Boolean function amk on n
Boolean values x1, . . . , xn for k is

amkk(x1, . . . , xn) :=
n∑

i=1

xi ≤ k.

Its Lean representation is analogous to amo’s, except with k a parameter.

def amk (k : nat) (l : list bool) : bool := l.count tt ≤ k

protected def eval (k : nat) (τ : assignment V) (l : list (literal V)) : bool :=

amk k (l.map (literal.eval τ))

The Sinz amk encoding has several slightly different forms. Shared across them is the
idea that a k×n matrix of signal variables is generated. Using 1-indexing, the signal variable
at the rth row and the cth column, sr,c, is set to true when at least r of the x1, . . . , xc are
true. A ternary clause that combines xi and sr,i−1 enforces that when both are true, sr,i is
set to true.

In the encoding we consider, a (k + 1)× n matrix is generated instead, but a unit clause
enforces that sk+1,n be false. As a result, if at least k + 1 of the xi are true, then there is no
satisfying assignment to the encoding.

Definition 6.8 (The Sinz at-most-k encoding). Let k be given. The Sinz at-most-k encoding
on Boolean literals x1, . . . , xn is

Sinzamkk(x1, . . . , xn) =

(
n∧

i=1

(xi ∨ s1,i)

)
∧

(
k+1∧
j=1

n−1∧
i=1

(sj,i ∨ sj,i+1)

)

∧

(
k∧

j=1

n−1∧
i=1

(xi+1 ∨ sj,i ∨ sj+1,i+1)

)
∧ sk+1,n,

where the si,j are fresh and pairwise distinct.

There are three types of clauses. The first kind, (xi ∨ s1,i), ensures that if xi is true, then
s1,i, the signal variable for xi on the first level of the matrix, is also true. The second kind,
(sj,i ∨ sj,i+1), propagates a true signal variable on any row of the matrix to the right. We
have already seen these two kinds of clauses in the Sinz amo encoding.
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Figure 6.2: The Sinz amk encoding under a truth assignment. Blue means that the literal is
true under the assignment, and red means the literal is false. Notice how when a second xi is
true, the second row of signal variables propagates that two xi are true. Note that the final
negated unit clause is not shown.

The third kind, (xi+1 ∨ sj,i ∨ sj+1,i+1), ensures that if j of x1, . . . , xi are true and xi+1 is
also true, then sj+1,i+1 is true. In other words, whenever xi+1 is true, it sets the next row of
the matrix true from that point on. Figure 6.2 depicts how the matrix of signal variables
behaves under a given truth assignment.

So far, we have discussed an encoding of the Boolean relation defined by the Boolean
function amkk(x1, . . . , xn) = ⊤. The negated relation is the at-least-k function alk. To
encode the negated relation, alkk(x1, . . . , xn), one can encode amkn−k(x1, . . . , xn). The
negation of each of the inputs ensures that if at most n− k of the negated literals are true,
then at least k of the original literals are true.

Because there is a two-dimensional indexing scheme for the signal variables, more machin-
ery is needed to translate between a row and column in the matrix and the variable generated
by the gensym. We present the Lean implementation here.

variables (g : gensym V) (l : list (literal V))

def S (r c : nat) : V := g.nth ((r * length l) + c)

def first_prop (r : nat) {c : nat} (hc : c < length l) :=

ite (r = 0) [[(nth_le l c hc).flip, Pos (S g l 0 c)]] []

def signal_row_prop (r c : nat) :=

ite (c > 0) [[Neg (S g l r (c - 1)), Pos (S g l r c)]] []

def inc_prop (r : nat) {c : nat} (hc : c < length l) :=

ite (c > 0 ∧ r > 0) [[

(nth_le l c hc).flip, Neg (S g l (r - 1) (c - 1)), Pos (S g l r c)

]] []

def neg_unit (k r c : nat) :=

ite (r = k ∧ c = length l - 1) [[Neg (S g l r c)]] []
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def sinz_amk (k : nat) : cnf V :=

if l = [] then [] else

join ((range (k + 1)).map (λ i, join

((range (length l)).map (λ j,

signal_row_prop g l i j ++

first_prop g l i j ++

inc_prop g l i j ++

neg_unit g l k i j )) ))

We discuss each definition in turn.
First, variables defines g and l so they don’t have to be re-defined in each definition.
S defines the signal variable matrix. By providing a list l (thereby fixing n, the length of

the list), S matches a row and column to the corresponding signal variable in the gensym g.
first_prop, signal_row_prop, and inc_prop generate the first, second, and third kinds of

clauses from the encoding, respectively. neg_unit generates the unit clause on the final signal
variable. Note that they generate CNF formulas with a single clause, which are appended
together in the encoding.

sinz_amk puts all four kinds of clauses together, indexed by each row and column in the
matrix. For rows and columns which are out of bounds for any particular clause generator,
the clause generator ignores the input and outputs the empty formula, which is disregarded.

We now prove the encoding’s correctness.

Theorem 6.9. Let k be given. Then the Sinz amk encoding is an encoding of amk.

Proof. The proof is analogous to one for the Sinz amo, except the two-dimensional signal
variable matrix requires more bookkeeping.

Once again, the proof proceeds by associating a semantic meaning for when each signal
variable is true.

Proof effort

The proof effort for the Sinz amk function was very similar to the one for amo. It took two
person-weeks to implement the encoding and prove sufficient supporting lemmas. The file
sinz amk.lean is about 700 lines long, but a final supporting lemma needs to be finished, so
the finished version will probably be about 1000 lines.
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7
Conclusion

In this work, we examined the problem of encoding Boolean relations into Sat. We defined
what it means for a Boolean formula F to encode a relation R, and then we proved particular
encodings correct for xor, amo, and amk. Our correctness proofs were presented in a library
for verifying Sat encodings using the Lean theorem prover.

In addition to our correctness proofs, we identified several general methods of defining
encodings and completing correctness proofs that will guide future work. For encodings which
are recursive in nature, a recursive definition and induction proof is most natural for proving
correctness. For encodings which are not recursive (imperative), a non-recursive definition is
easiest to work with. Correctness depends on providing an explicit satisfying assignment,
given some input assignment τ .

We also grappled with how to formalize the problem of generating fresh variables. We
presented gensym. gensym supports operations which allow it to be used in both recursive and
non-recursive implementations of encodings. By providing a hypothesis that a gensym’s stock
is disjoint from literals already present, the gensym can provably provide fresh variables.

Future work

The library offers many lines of future work. Currently, our correctness proofs are for specific
Boolean relations. Giljeg̊ard and Wennerbreck [27] verified general encoding methods, rather
than encodings for single functions. One possible direction of interest for our library is
verifying the Tseitin transformation correct, rather than instantiations of it.

We discussed in Section 4.1 that we represented clauses and formulas as lists in Lean.
One natural extension for our library is to create a tool to translate a Lean representation of
a formula to DIMACS format. That way, encodings that we verify in our library can produce
output in DIMACS format, which can then be given to a Sat solver. Our library would then
become a bridge between expressing encodings in Lean and running them on a solver.

One way to demonstrate the scope of the encodings in our library is to verify encodings
of NP-hard problems correct. For example, Giljeg̊ard and Wennerbreck [27] proved their
encoding of the n-queens problem was correct by using their correctness results for sub-
encodings. We could do a similar verification of the naive encoding for the Hamiltonian
cycle problem we discussed in Section 2.2. A more ambitious project would be to verify the
encoding of the Keller conjecture [10].

There will also, of course, always be more encodings to prove correct (or even variations
of the same encoding). Pseudo-Boolean and cardinality constraints, binary counters, and the
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order encoding are encodings of interest to verify next.
Another expansion in the scope of the library lies in verifying encodings more general

than ones on Boolean relations. For example, our encoding described in Section 2.2 for
the Hamiltonian cycle problem first took the graph problem and translated it onto a set of
Boolean variables. While this inevitably must be done to encode it into Sat, the translation
from graph problem to Boolean satisfiability problem is itself an encoding and requires
verification. Expanding the definition of encoding to include more than Boolean relations
would increase the range of results the library can provide.
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Biere. XOR local search for boolean brent equations. In Chu-Min Li and Felip Manyà,
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